Image created by Dr. Michael J. Miller |
Cronobacter sakazakii is a harmful germ that can be found in powdered baby formula. It can cause very serious health problems in infants, such as meningitis and septicemia. Right now, it takes a long time and is complicated to check if the germ is in the formula. However, a new study has created a special test that uses a computer program to find the germ in the formula. This new method makes it easier and faster to find the germ, which is known for causing serious illness in babies. It helps make sure that baby formula is safe to use.
Reference
Immunoinformatics Assisted Design of a Multi-Epitope Kit for Detecting Cronobacter sakazakii in Powdered Infant Formula (PIF). Oladipo, E.K. et al. Food Quality and Safety, https://doi.org/10.1093/fqsafe/fyae005. Published: 22 January 2024.
Abstract
Cronobacter sakazakii, formerly Enterobacter sakazakii, is an emerging ubiquitous and opportunistic foodborne pathogen with a high mortality rate. It has been implicated in cases of meningitis, septicemia and necrotising enterocolitis among infants worldwide in association with powdered infant formula (PIF). In the present study, a peptide-based kit was designed with a bioinformatic technique to rapidly identify Cronobacter sakazakii in powdered infant formula (PIF) using flhE, secY, and bcsC, which are genes responsible for its biofilm formation, as target genes. The antigenicity, membrane topology, and the presence of signal peptides of the target genes were analysed using Vaxijen, DeepTMHMM, and SignalP servers. To provide stability and flexibility to the multiple-epitope construct, the linear B-cells and helper T-cells (IL-4 (interleukin 4) and IL-10 (interleukin 10) inducing epitopes) were linked with a GSGSG linker followed by the addition of protein disulfide bonds. To ascertain specificity, the multi-epitope construct was molecularly docked against genes from sources other than PIF, like alfalfa, and the environment, with PIF being the highest: -328.48. Finally, the codons were modified using the pET28a (+) vector, and the resultant multi-epitope construct was successfully cloned in silico. The final construct had a length of 486 bp, an instability index of 23.26, a theoretical pI of 9.34, a molecular weight of 16.5 kilo Dalton (kDa), and a Z-score of -3.41. The multi-epitope peptide construct could be a conceptual framework for creating a Cronobacter sakazakii peptide-based detection kit, which has the potential to provide fast and efficient detection. However, there is a need for additional validation through the in vitro and in vivo techniques.